What's all the buzz?

FPPA Annual Meeting

Orlando March, 2012

Randy Carter

Technologies Specialist Anderson & Vreeland

Advancements in Inkjet Film

What is Gray-Balance?

How many people use conventional film?

How many use Digital plates?

How many use both?

How many are sheet? Liquid? Both?

Who still manufacturers silver-halide film?

- AGFA?
- Fuji?

Where is the need?

- Liquid Photopolymer
 - Corrugated
 - Stamping
 - Sand Molding
- Analog-only Plate Materials
- Screen Printing
- Dry-Offset
 - Quickly turning to digital materials

Where is the need?

- Liquid Photopolymer
 - Corrugated
 - Stamping
 - Sand Molding

Avantage liquid plate made by AVStar film

- No Direct-to-Liquid Exposure
- Standard Liquid Size Requirements:
 - 52x80"
 - 42x60"
 - 30x48"
 - 30x40"
 - (uncommon sizes: 44x60" & 52x110")

2 Types of Ink

Pigment-Based

- Colorant particles are suspended in the liquid
 - » Good light-fastness less fade than dye-based
 - » Recent advancements to increase colorfulness
 - But... not easy to clean
 - » Can only be cleaned with lighter-fluid/butane

2 Types of Ink

Dye-Based

- Colorant particles dissolved (solution)
- Better Flow properties than Pigment inks
 - » Produce vivid color
 - » Good for high-precision printing
 - » Recent advancements in longevity
 - » Able to get more "color" into the into dye
- Can be cleaned with Alcohol or Film-Cleaner

Media

Standard Clear Film Media

- Clear Film
- Initially developed for screen-printing
- Good for Flexo?
 - Can be used, but some air pocket issues

ancements in Inkiet

Media

Matte-Based Media

- Matte coated media has a micro-porous coating
 - Roughs up the surface
 - Allows air to escape during vacuum
 - Easier to pull draw-downs
 - » Even on Liquid Plate-making
 - Good for Conventional Sheet Plate-making
 - » Easy drawdown on sheet photopolymer

Ripping Technology

- Many RIPs are available
- Needs driver output to the specific inkjet
- All the RIPs are different
 - Ease of use
 - Integration into existing workflow
 - Handling of Spot Color angles, etc

Resolutions/Linescreens

- Resolution will depend on the printer. In the case of Epson devices, the output is generally a multiple of 720 ppi
- 1440 ppi
 - Linescreens available from **45-85 lpi**
- 2880 ppi
 - Linescreens available from 85-120 lpi

Speed/Quality

Resolution	1440 ppi	2880 ppi
Linescreens:	20 – 85lpi	85 – 120lpi
Min San Serif Text:	6pt	6pt
Speed (44x60"):	20 min	40 min
Dmax Ortho:	3.0 - 3.2	3.6 - 4.0

InkJet Film Sample

LaserPointII sample 2540/133lpi

Limitations

- Why can't we go to 200 lpi?
 - Inkjet head technology can only make a droplet size so small
 - » Image-setters use a light or laser to expose in resolution, not liquid ink.
 - » Liquid ink flows before drying, so at higher resolutions, spread is an issue.

• Where is the wide-format device?

- Wide format devices are available, but the speed is quite prohibitive.
 - » 44"x60" piece at 1440 ppi on a 60" machine: Approx. 1 hour

Questions:

- How many of you have an image-setter larger than 44" wide?
- What is the percentage of your work that is larger than 44" wide?
 - 100%
 - 75%
 - 50%
 - 25%
 - 5%

Does the speed advantage of the 44" device, offset the need for a wider machine? (piece together jobs)

What is Gray-Balance?

The FIRST definition:

"The proper combination of cyan, magenta, and yellow ink dot area, hue/density, trap, transparency, and register on a specific substrate under normal printing conditions that reproduce as a neutral gray."

Gray-Balance – C + M + Y builds

Neutral Gray

- The end result of C,M, & Y ink over-printing
 - Generate a color without HUE

G7 (GRACoL 7)

- Originated in the offset market
- "Near-Neutral Calibration Process"
- Takes into account C M Y channels
 - Measures in overprint mode to generate dot-gain curves

hat is Gray-Bala

- » Uses Xrite i1iO or similar
- Converts L*a*b* values to dot percentages

G7 Recommendations

- Single Pigment Ink
- Meet targeted L*a*b* values for CMYK
 - FIRST recommends within a Delta E of <5
 - Industry experts suggest Hue is more important

Ink -> L*a*b* Target:	L*	а*	b*
	55	-37	-50
	48	74	-3
	89	-5	93
	16	0	0

G7 Requires Consistency in:

- Ink
 - L*a*b* values
 - Viscosity
 - Type/brand
- Anilox
- Solid ink Density
- Sticky-back/ Plate Package Build-up
- Impression/Operator Adjustments
- Press Curves
- Plate-making
- Finishing Components
 - Lamination
 - Varnish

Measuring Neutral Gray

- Using Spectrophotometer
- Similar to measuring spot colors

Our final goal is near-neutral density:

(a* = ZERO, b* = ZERO)

The best way to get to this neutral density is to control and repeat measureable points such as density, dot gain, and La*b*. If these three points remain consistent, the neutral gray will remain consistent.

Challenges of Implementing G7 in Flexo

- Consistency run-to-run
 - In plate-making
 - In press setup
 - In multiple presses throughout a plant
 - In finishing operations
- The diversity of specialty materials & ink

s Gray-Bala

Is there a place where Flexo can begin to Focus on Gray-Balance?

Utilizing Gray-Balance in Flexo

- Add CONTROL STRIPS
 - DIGITAL FILE
 - » To be read in 1-bit TIF/LEN Viewer
 - » Verifies press-curve info
 - Film/Digital Mask
 - » Measured with transmission densitometer
 - PLATE
 - » To be measured by plate QC device
 - » Verifies plate-room equipment is working properly

PRESS

- » Includes a 3-color Gray-Balance Target
 - Made of 3 blocks

Control-Strip – PRESS

• How can it be measured?

L* value = variable a* value = 0 b* value = 0

Substrate will play an important role in achieving the values above.

Control-Strip – PRESS

- What does this show?
 - Press is consistent
 - Quickly shows impact of:
 - » improper impression
 - » Improper press configuration (anilox)
 - VALIDATION
 - » If color issue in the job; but control strip reads properly: problem lies somewhere other than press

G7 & Gray-Balance in Flexo

- G7 is based off the concept of Gray-Balance
 - Focused in the offset arena
- Components of G7 can be applied to Flexo
 - Start with Process Control
- Gray-Balance can be a key indicator in helping troubleshoot print issues
 - If check-points are implemented in the process

s Gray-Bala

Flat-Top Dot Systems

- Flint NExT
- Toyobo Cosmolight (kind-of)
- Under-Water Exposure Unit
- Esko Inline UV2
- Dupont DigiFlow
- MacDermid LUX
- Kodak NX

How to make a Flat-top dot?

Remove Oxygen from the surface of the plate

- Quick Surface Polymerization
 - Flint NExT
 - Esko Inline UV2
- Barrier
 - Toyobo
 - MacDermid Lux
 - Kodak NX
- Substitution
 - Dupont DigiFlow
 - Under-Water Exposure

What's wrong with Oxygen-Inhibition? Nothing! In most cases...

Provides:

- A naturally-occurring, smooth & consistent cutback
- A simple plate-making workflow

Facilitates:

• Sub-surface screening

Why Flat-Top?

Flat-Top dots may be able to help with:

- Solid Ink Density
 - surface screening
- Mottle on some porous paper substrates
- Fluting in Corrugated Printing

Flat-Top in Prepress

Without Oxygen-inhibition...

- There will need to be less of a bump curve
 - 1% bump may need to be required
- Will require a heavier cut-back (press dot gain) curve
 - No natural reduction
 - Tone values are 1 to 1 like analog platemaking
- Hybrid Screens will have to be modified.

Hybrid Screening

- Utilizes AM screening from shadows to near-highlights
- Picks up a "custom" screen in the highlights
 - Stochastic-type
 - HD Flexo dot stays on the grid like AM
 - » dots reduce at different levels once dot = "X" pixels
 - Flat-Top Hybrid or HD results in a high resolution stochastic screen in the highlight areas.
 - Transition/meeting point of the 2 occurs less than 10%

The difference in Specialty Screens

The difference in Specialty Screens

ANDERSON& VREELANDING.

Estimated Dot side-view on Digital Plate with with Ablated Mask

HD Flexo Screening – Digital Plate

More shallow relief on digital – non Flat-Top HD Flexo plate

Estimated Dot side-view on Digital Plates - Processed

HD Flexo Screening – Digital Plate

Flat-Top & Hybrid...

- Flat-top can use a Hybrid Screen
 - No oxygen-inhibition/dot reduction?
 - » Stochastic dot in the extreme highlights
- Will this stochastic-hybrid Flat-Top print as well as the digital plate-HD Flexo Screening?

- The return to Flat-Top dots is relatively new
- There are still a lot of Technologies being tested
- Open discussion about when to use:
 - Standard Digital
 - Flat-Top
 - Solid surface Screening
- More to come...

What's all the buzz?

FPPA Annual Meeting Orlando March, 2012

Technologies Specialist Anderson & Vreeland

