Nothing ventured, nothing Gained

An Examination of Mechanical Gain Models and Causes in Flexographic Printing of Corrugated Board

Timothy Gotsick March 4, 2013 MacDermid Printing Solutions

Corrugated Structure

The Problem

Board vs Dot

- Board structure changes the impression level experienced by dots across the surface of the board
 - Dots printing on flute 'tip' are harshly compressed
 - Dots printing on flute 'valley' are minimally compressed

Pressure Variation Effect

Figure 15. Print density as a function of pressure for the four different liner board grades.

"Striping on Flexo Post-printed Corrugated Board" Martin Holmvall, Thesis Fibre Science and Communication Network, Department of Natural Sciences, Mid Sweden University, SE-851 70 Sundsvall, Sweden, 2007

Pressure Variations

Figure 17. Pressure distributions for different photopolymer stiffnesses (left) and thicknesses (right).

"Striping on Flexo Post-printed Corrugated Board" Martin Holmvall, Thesis Fibre Science and Communication Network, Department of Natural Sciences, Mid Sweden University, SE-851 70 Sundsvall, Sweden, 2007

Print Pressure Variations

Figure 20. The relationship between the pressure at the ridges and in the valley.

"Striping on Flexo Post-printed Corrugated Board" Martin Holmvall, Thesis Fibre Science and Communication Network, Department of Natural Sciences, Mid Sweden University, SE-851 70 Sundsvall, Sweden, 2007

Quantifying Fluting

Dot Shape affects Fluting

Root causes of dot gain

Root causes of dot gain?

Factors that Influence Dot Gain

- Molded from 32 Shore A photopolymer
- 7 cm tall
- 1 cm tip
- Θ = 53°, 62°, 71°, 79°

Dot Compression Analyzer

Dot Compression LIVE!

Contact Patch Expansion

Contact Patch Measurement

Contact Patch Growth

Contact Patch vs Compression by Angle

Dot Force vs Compression

Dot Force Increase

Light Compression in Valleys

Platemaking Effects on Dot Shape

LUX Digital 52° with 3.60 mils

Analog 46° with 2.95 mils Standard Digital 41° with 2.80 mils

Dot shoulder angle, valley depth are strongly influenced by platemaking method

Dot Shape sets Compression Response

Standard Digital

LUX Digital

Reduced Fluting Sensitivity

- Fluting is caused by differences in the impression environment the dots are subjected to at the flute tips and valleys
- Dot shoulder angle influences dot gain because:
 - Contact patch size (gain) increases with impression, but it increases <u>less</u> for dots with shallower shoulder angles
 - Impression force increases with impression, but it increases
 <u>less</u> for dots with shallower shoulder angles
- Platemaking technology strongly influences dot shoulder angle, and thus the fluting tendency of plates made by different techniques
- The dot shoulder angle model of gain prediction seems to explain empirical results well

Conclusions

- Fluting is caused by differences in the impression environment the dots are subjected to at the flute tips and valleys
- Dot shoulder angle influences dot gain because:
 - Contact patch size (gain) increases with impression, but it increases <u>less</u> for dots with shallower shoulder angles
 - Impression force increases with impression, but it increases
 - Except when it doesn't.
- Platemaking technology strongly influences dot shoulder angle, and thus the fluting tendency of plates made by different techniques
- The dot shoulder angle model of gain prediction seems to explain empirical results

F-factor vs Dot Shoulder Angle

 $71^* \rightarrow 2.34$

* Near dot top

Compound Shoulder Angle

F-factor vs Dot Shoulder Angle

Not quite. We just need to improve the theory.

Dots

A mystery explained?

 $Cap \rightarrow F$ -factor

none
$$\rightarrow 2.99$$

 $35d \rightarrow 3.03$

 $45d \rightarrow 1.92$

 $55d \rightarrow 1.18$

Review: Capped Plate Construction

A different response to impression

F-factor vs Dot Shoulder Angle

• The dot shoulder angle model of gain prediction seems to explain empirical fluting results *for single layer photopolymer systems.*

Lesson: Use dots with the steepest shoulder angle to minimize fluting.

• For two-layer photopolymer systems, gain seems to be best predicted by the difference in durometer between the two layers.

Lesson: Capped liquid plates can deliver exceptionally low fluting, and use the highest durometer cap feasible.

Timothy Gotsick VP Technology, MacDermid Printing Solutions tgotsick@macdermid.com http://www.macdermid.com/printing

Follow us on:

