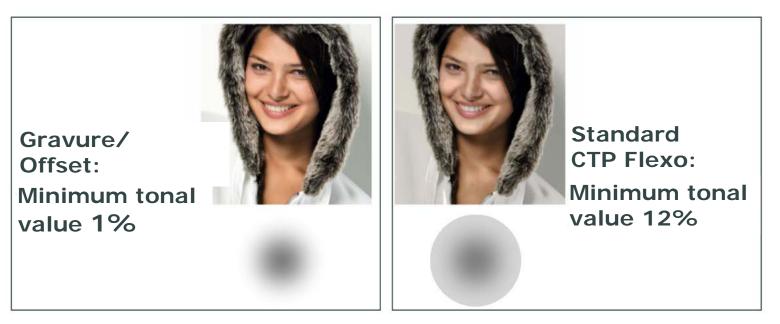
HD Flexo Technologies

- the printing issues
- technical solutions & markets
 - Real costs
 - FHDF & HD color
 - Automation

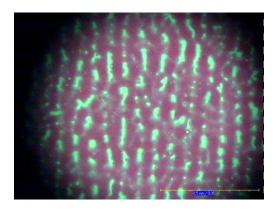
- lan Hole
- VP Market Development Flexo
 - FPPA Seminar March -2014



Typical Flexo Print Issues

Flexo Problem #1: Too strong minimum dots

- Large Minimum Tonal Value (especially at higher LPIs)
 Jow tonal image contrast, improper image appearance
- Transition to Zero
 - → Visible vignette edge due to too large minimum tonal values


"Flexo-Problem": Minimum dots bend on the press!

Flexo Problem #2:

Insufficient ink laydown & Uneven ink laydown

 Flexible Packaging printing often suffers from inhomogeneous ink laydown:

Pinholes in solid area printed with digital flexo plate

- → Pinholes are reducing the solid appearance to the human eye
- → Overprints and pantone colors become uneven and checky
- For better ink laydown, printers often have to
 - Separate into one plate for solids and one plate for process work → higher cost
 - Use higher volume Anilox roller → lower quality of vignettes & highlights

2008... HD Flexo

HD Flexo – 4000ppi Imaging Technology

- Increasing Image Screen Ruling has limits!
 - Images are composed of 256 grey levels (Repro side)

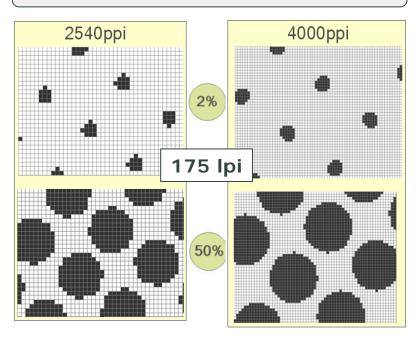
Number of natural grey levels = (PPI/LPI)²
PPI = CTP Imaging resolution

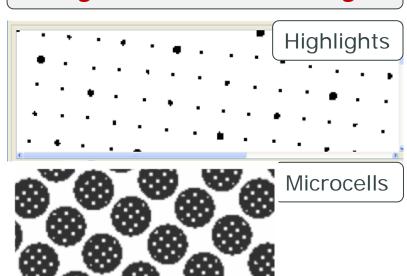
LPI = job linecount

(Natural grey levels are further reduced by dot gain compensation)

	2400 ppi	2540ppi	4000ppi
150lpi (60L/cm)	256	287	711
175lpi (70L/cm)	188	211	522
200lpi (80L/cm)	144	161	400
250lpi (100L/cm)	92	103	256

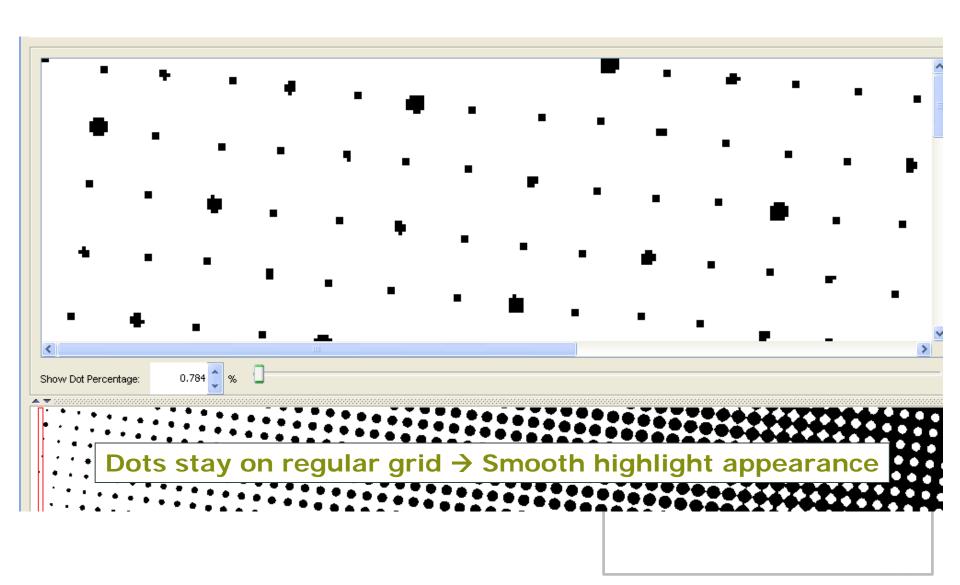
Only 4000ppi is reproducing the full image contrast above 150 LPI Only 4000ppi has enough grey levels at 250LPI


What is HD Flexo?


HD Flexo is a unique imaging technology combining:

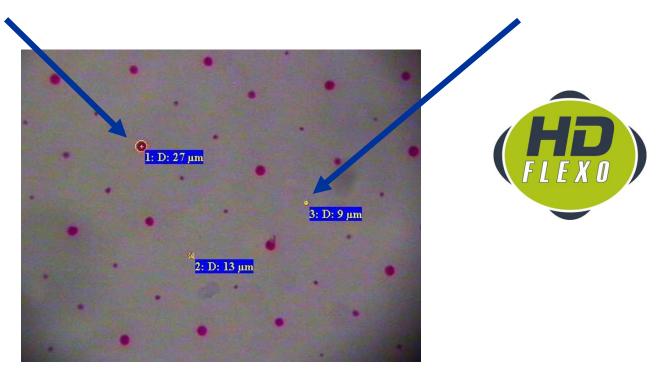
- High resolution imaging at 4.000ppi / 6μm laser spot size
- High Definition screening technology

High resolution imaging



High Definition screening

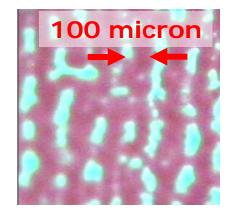
Highlight stabilization by balanced dot sizes

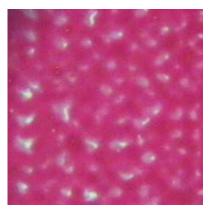


HD Flexo - Highlights

Solution of Flexo-Problem #1: Stable minimum dots

Supporting dots for mechanical stability and as distance holder to Anilox roller

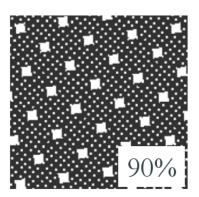

Stable printing minimum dots

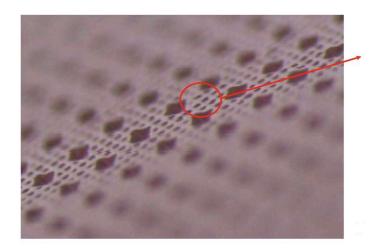


HD Flexo Microcess in flexible packaging printing:

Solid printout with standard plate surface

Solid printout with Micro Screening on plate surface


- Ink laydown improved but still far from ideal
 - → too low solid ink density (SID) with fine Anilox rollers
 - → only marginally improvement with spot colors/white

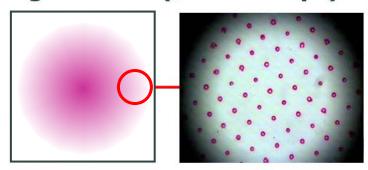


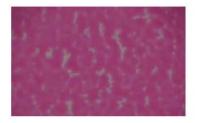
Solution to the Flexo-Problem #2: Microcells

75% tint with Microcells on processed plate

2013... Full HD Flexo

Don't compromise - use the best out of both worlds!



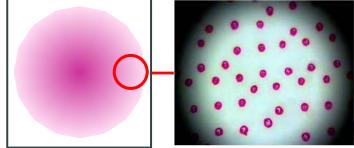

No Compromises – Good Highlights and Solids

Digital Plate ("Round Top")

HD Flexo vignette to zero

- → Finest minimum dots in print
- → HD Flexo vignettes down to zero

MicroCell Solid



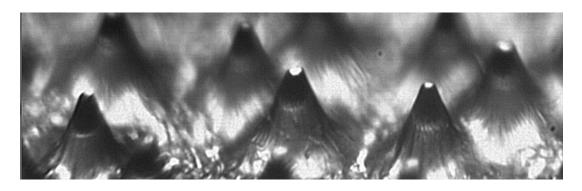
MicroCells with 500lpi (200L/cm)

→ Good Solids with almost no pinholes

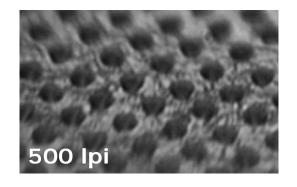
Flat Top Plate

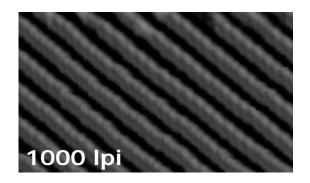
Vignette to zero

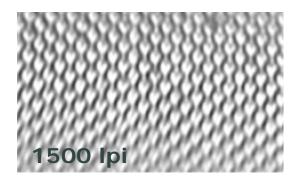
- → High dot gain
- → Vignettes to zero with grainy "Samba"-Screen only


MicroCells with 1000lpi (400L/cm)

→ Perfect Solids with very high solid ink density


Why does Full HD Flexo boost Highlights & Solids?


Full HD Flexo creates a unique dot shape:



HD Flexo dots in highlight area (rounded dot shape)

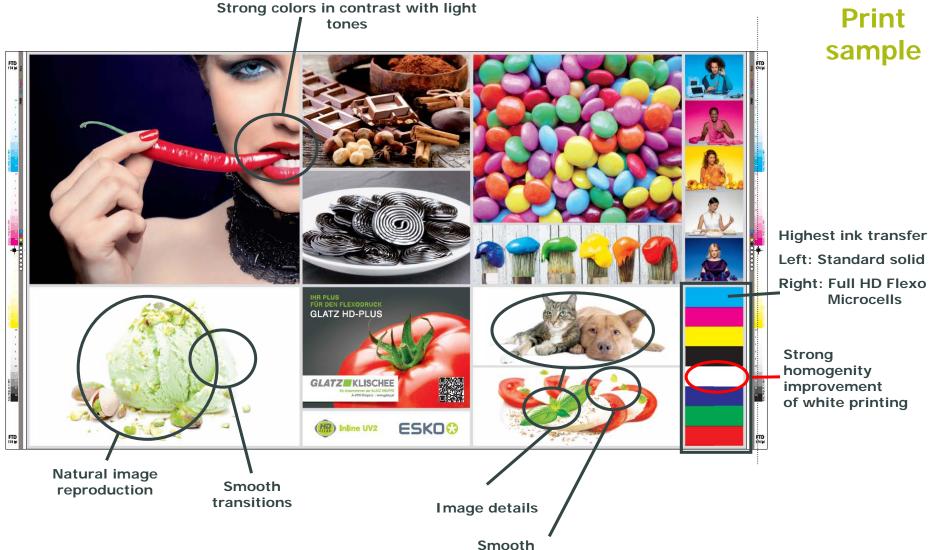
High definition Microcells in solids and vignettes

Full HD Flexo in Flexible Packaging

White printing

Microscopic Details:

White printing with standard solids


White printing with Full HD Flexo Microcells

Benefits:

- Stronger white with same Anilox roller
 - → Saves a double press print units
- Same white strength with finer Anilox roller
 - → Reduces ink consumption (ca. -25%)

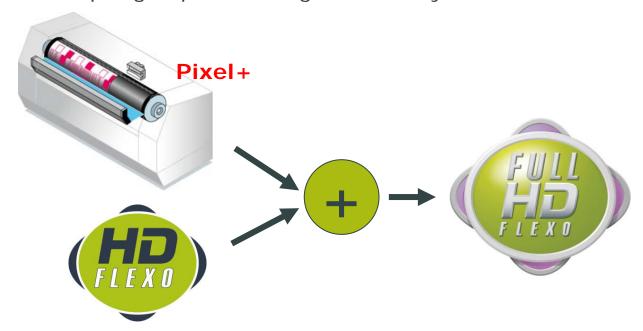
Full HD Flexo in Flexible Packaging

transitions

Full HD Flexo in Flexible Packaging

Standard Flexo Full HD Flexo without with Microcells Microcells

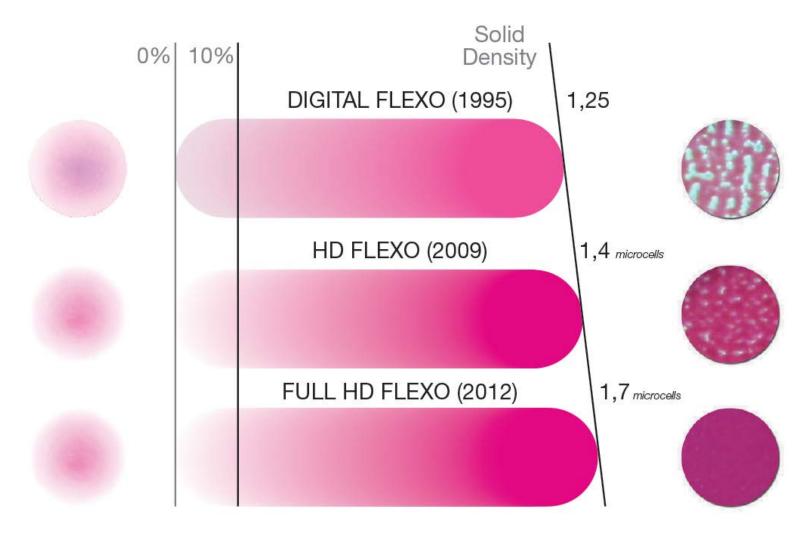
Bright intensive colors with smooth vignettes to zero:



What is Full HD Flexo?

Digital UV main exposure (InlineUV)

- UV LEDs inside CDI → Leapfrog in platemaking consistency



4000ppi imaging & screening technology

- HD screening for highlights to zero
- Microcells for improved ink laydown
- Brilliant image contrast & detail sharpness
- → New Flexo print quality standard

Full HD Flexo Print Quality

Full HD Flexo for Flexible Packaging

High End Level

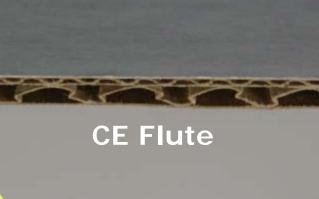
Jobs with 150lpi ... 250lpi Anilox > 1100lpi

Quality Level

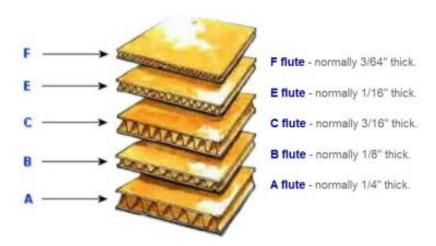
Jobs with 130lpi ... 150lpi Anilox 900 ... 1100 lpi


Main Stream Level

Jobs with 110lpi ... 130lpi Anilox 800 ... 900 lpi

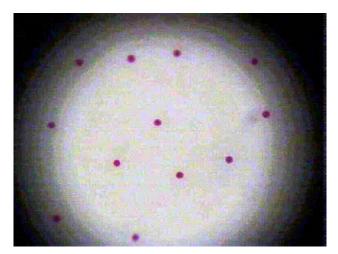


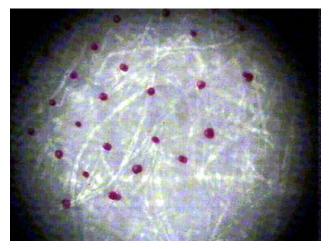
Full HD Flexo for Corrugated Post-Print


Improved highlights and higher image contrast

Perfect fadings Strong and intensive colors

Full HD Flexo for Corrugated Post-Print


- Fluting reduction
 - Process work becomes possible on cheap B-flute and even C-flute boards
- Improved image quality
- Improved highlight stability
- Better ink laydown
 - Even with harder plates
- In some cases significant SID increase (ink/substrate related)


Full HD Flexo for Label Printing

- Better quality on gear driven presses → less gear marks
- Possible to use harder tapes → SID increase
- Dots more foregiving against impression changes
 - → Identical printout of all Label repetitions

Full HD Flexo medium hard tape

HD Flexo medium soft tape

Talking Points:

Flexibility

- Digital plates and sleeves from all suppliers
- Covers all Flexo applications (Flexible packaging, Corrugated, FC, Labels)
- Consistent Quality certified everytime
- Guaranteed Repeatability over short or long time frames
- NOTHING YOU CANNOT PLATE

Compatibility

- Standard Flexo, HD Flexo and Full HD Flexo plates made as needed
- ALL Legacy work is safeguarded at 2100, 2400 & 2540 resolutions
- Full HD Flexo is Upgradeable to all recent mid/large size CDI models
- CUSTOMER NO RISK POLICY

Talking Points 2:

100% digital workflow

- Fully automatic exposure settings according to individual job tickets
- No manual operator intervention
- Training Curve very short
- Customers have never given back this equipment
- EASIER TO USE

Sustainability

- No additional consumables (no films, no laminates, no chemistry...)
- No electrical energy consumed in standby mode (bank exposure frames consume several kW in standby)
- Diode Energy needs at least 50% less than existing flourescent tubes
- No toxic disposals (bank exposure frame lamps contain e.g. Mercury)
- No fire risk from Cool Running Diodes

REAL COST of Plate Imaging / Exposure

Plate Imaging / exposure – the buying process

Company	Product	Initial Investmen t	Technology Fee, Cost of Ownership, "Click Charge"	UV Tube changes per year	Consumables TIL, laminate, Gas cylinders	Plate Volume per year			Total cost over 1 year	Total cost over 3 years	Total cost over 5 years
ESKO 🛟											
QU POND.	Buying	has an	emotion	ıal elei	ment – a the	truste m etc		person	, alway	s bough	nt from
		So	me solu	tions	appear to	fit be	tter wi	th your	busines	ss	
Mac Dermid	Could b	e influe	enced by		al promo will DOL				NEXT 5	MINUT	ES and
			BUT in	forma	tion abou	ıt ALL	your o	otions is	vital		
Flint Group					Some Pe	ertiner	nt facts				
Kodak											

of platemaking steps

Company	Product	Oxygen inhibition	Image- setter	Film TIL	Laminator	Plate	CDI	Laminator	Exposure Unit	Special Exposure Unit	Plate- making
ESKO 🛟	InlineUV 2	High UV density					1	lineUV			solvent thermal
QU POND,	Cyrel [®] Digiflow	Nitrogen					1		nitro	gen	solvent the val
Mac Dermid	шX	LUX membrane				14 PT. Low Dot Gains 15 PJ. Excellent Order 1	1	LUX Membrane 2	3		4
Flint Group	NExT	High UV density				FlintGroup FlintGroup nyloflex® Digital	1			NExT Exposure	3
Kodak	Flexcel NX	Thermal Imaging Layer	1	Can Son	2				3		4

REAL COST of plate Imaging / exposure – the PRODUCTS

Company	Product	Initial Investment	Technolog y Fee, Cost of Ownership , "Click Charge"	UV Tube changes per year	Consumables TIL, laminate, Gas cylinders	Plate Volume per year			Total cost over 1 year	Total cost over 3 years	Total cost over 5 years
ESKO Co	UV Main Exposure	ES	SKO CD	I adds	UV mair specializ					ing witl	n
<u>QU PONT</u>	O2 Depletion Using Gas	DuPont	replace	es atm	osphere	with o	ontrolle	ed amoi	unt of C	2 in UV	frame
Mac Dermid	O2 Depletion Using Laminate	Mac	Dermid	lamin	ates film		an imaç osure	jed plat	e before	e UV fra	me
Flint Group	UV Diode Boost	Flint ex	poses p	olate v	vith UV d		oost fol osure	llowed k	oy stand	dard UV	frame
Kodak	Imaged Laminate	Koda	k image	es film	layer the		inates sure	it to pla	te befo	re UV fr	ame

REAL COST of plate Imaging / exposure – Initial Investment

Company	Product	Initial Investmen t	Technology Fee, Cost of Ownership, "Click Charge"	UV Tube changes per year	Consumables TIL, laminate, Gas cylinders	Plate Volume per year			Total cost over 1 year	Total cost over 3 years	Total cost over 5 years
ESKO 🛟	UV Main Exposure	Upgraded Imager			f HD tech specific	optics	for sha	rpness	and scr	reens– r	
QU PONT)	O2 Depletion Using Gas	Frame & Purge Equipment			insignifi ame fitte nnology a	d with	purgined in ma	g systei	m from ustrial a	gas cyli	
Mac Dermid	O2 Depletion Using Laminate	Film Laminator			o laminat ing techr	e barr ology	ier film used in	onto al	ready i applicat		
Flint Group	UV Diode Boost	UV Imaging Unit			oorting U cations a	V diod	le unit ι	ıses exi	sting te		
Kodak	Imaged Laminate	Imager & TIL Laminator			imaged ito plate						

REAL COST of plate Imaging / exposure – Fees

Company	Product	Initial Investmen t	Technology Fee, Cost of Ownership, "Click Charge"	UV Tube changes per year	Consumables TIL, laminate, Gas cylinders	Plate Volume per year			Total cost over 1 year	Total cost over 3 years	Total cost over 5 years
ESKO 🛟	UV Main Exposure	Upgraded Imager	0				No	Fees			
QU POND.	O2 Depletion Using Gas	Frame & Purge Equipment	?		Fees I	may a _l	pply as	monthly	y/yearl _\	y cost	
Mac Dermid	O2 Depletion Using Laminate	Film Laminator	?		Fees I	may a _l	oply as	monthly	y/yearl	y cost	
Flint Group	UV Diode Boost	UV Imaging Unit	?		Fees I	may a _l	oply as	monthly	y/yearl	y cost	
Kodak	Imaged Laminate	Imager & TIL Laminator	?		Fees	may al	oply as	monthly	y/yearl	y cost	

REAL COST of plate Imaging / exposure – Tube replacement

Company	Product	Initial Investmen t	Technology Fee, Cost of Ownership, "Click Charge"	UV Tube changes per year	Consumables TIL, laminate, Gas cylinders	Plate Volume per year		Total cost over 1 year	Total cost over 3 years	Total cost over 5 years
ESKO 🛟	UV Main Exposure	Upgraded Imager	0	0	NO tub),000 hr cement		efore
QU POND.	O2 Depletion Using Gas	Frame & Purge Equipment	?	?	Based of per year		ep leve	e = larg		
Mac Dermid	O2 Depletion Using Laminate	Film Laminator	?	?	Based o		ep leve	e = larg		
Flint Group	UV Diode Boost	UV Imaging Unit	?	?	Based of per year		ep leve	e = larg		
Kodak	Imaged Laminate	Imager & TIL Laminator	?	?	Based o		ep leve	e = larg		

REAL COST of plate Imaging / exposure – Consumables

Company	Product	Initial Investmen t	Technology Fee, Cost of Ownership, "Click Charge"	UV Tube changes per year	Consumables TIL, laminate, Gas cylinders	Plate Volume per year		Total cost over 1 year	Total cost over 3 years	Total cost over 5 years
ESKO 🛟	UV Main Exposure	Upgraded Imager	0	0	0		No Cons	sumable	es	
QU PONT)	O2 Depletion Using Gas	Frame & Purge Equipment	?	?	?		nder ex ise wou monti		cylinde	
Mac Dermid	O2 Depletion Using Laminate	Film Laminator	?	?	?	Barı	lamina eet per			e so 1
Flint Group	UV Diode Boost	UV Imaging Unit	?	?	0		No Cons	sumable	es	
Kodak	Imaged Laminate	Imager & TIL Laminator	?	?	?		aging Fi so 1 sh			

REAL COST of plate Imaging / Exposure – Plate Volumes

Company	Product	Initial Investmen t	Technology Fee, Cost of Ownership, "Click Charge"	UV Tube changes per year	Consumables TIL, laminate, Gas cylinders	Plate Volume per year	Total cost
ESKO 🛟	UV Main Exposure	Upgraded Imager	0	0	0	?	Plate volumes irrelevant for imaging and UV main exposure has no accumulating costs
QU POND.	O2 Depletion Using Gas	Frame & Purge Equipment	?	?	?	?	Plate volumes use more UV tubes in frame and gas cylinders as operating costs
Mac Dermid	O2 Depletion Using Laminate	Film Laminator	?	?	?	?	Plate volumes use more barrier film and UV tubes in frame as accumulating costs
Flint Group	UV Diode Boost	UV Imaging Unit	?	?	?	?	Plate Volumes reflect more florescent tubes in UV frame
Kodak	Imaged Laminate	Imager & TIL Laminator	?	?	?	?	Plate volumes accumulate more Thermal Film used and more florescent UV tubes for frames

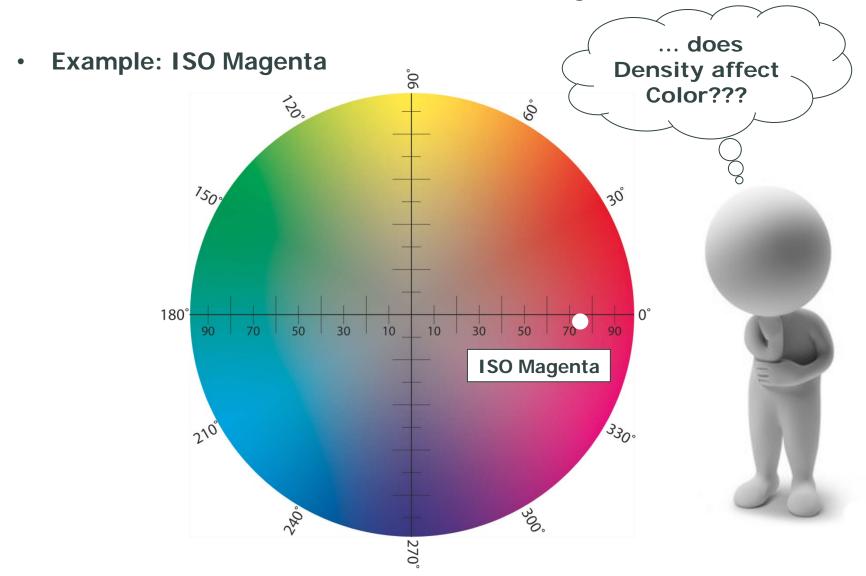
REAL COST of Plate Imaging / Exposure – Year 1 costs

Company	Product	Initial Investmen t	Technology Fee, Cost of Ownership, "Click Charge"	UV Tube changes per year	Consumables TIL, laminate, Gas cylinders	Plate Volume per year			Total cost over 1 year	Total cost over 3 years	Total cost over 5 years
ESKO 🛟	UV Main Exposure		Year 1 n	neans	initial inv	/estme	ent only	,			
QUPOND	O2 Depletion Using Gas			ube re	ees, Gas placeme volume	_					
Mac Dermid	O2 Depletion Using Laminate			escen	t, Rental t tube re ate volun	placen					
Flint Group	UV Diode Boost				Yearly Foased on						
Kodak	Imaged Laminate			t tube	Fees, T replacen volume						

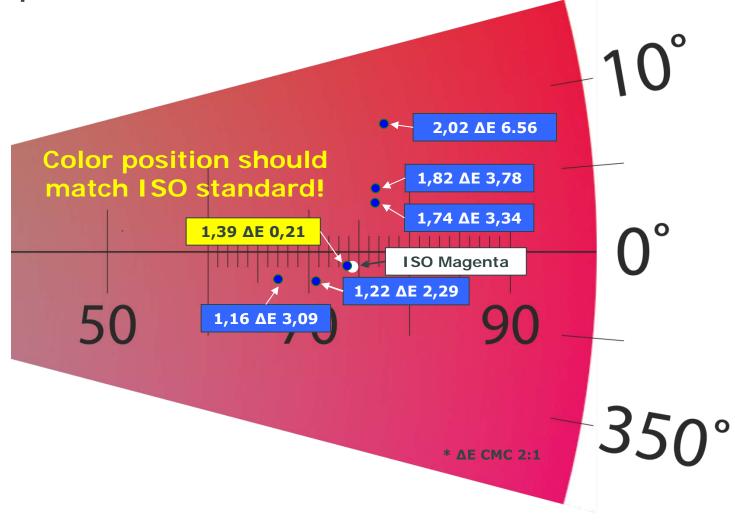
REAL COST of Plate Imaging / Exposure – Year 3 costs

Company	Product	Initial Investmen t	Technology Fee, Cost of Ownership, "Click Charge"	UV Tube changes per year	Consumables TIL, laminate, Gas cylinders	Plate Volume per year			Total cost over 1 year	Total cost over 3 years	Total cost over 5 years
ESKO &	UV Main Exposure	Y	ear 3 co	sts zeı	ro \$ = no	consu	ımable	s, no fe	es		
QU PONT)	O2 Depletion Using Gas				s reflecte ly fees a replace	nd flor	_				
Mac Dermid	O2 Depletion Using Laminate	Costs			years us escent U\				yearly		
Flint Group	UV Diode Boost	Year	3 costs ı		ed in yea ube repla	_		floresce	nt UV		
Kodak	Imaged Laminate				costs re early fee replace	s and					

REAL COST of Plate Imaging / Exposure – 5 Years costs


Company	Product	Initial Investmen t	Technology Fee, Cost of Ownership, "Click Charge"	UV Tube changes per year	Consumables TIL, laminate, Gas cylinders	Plate Volume per year		Total cost over 1 year	Total cost over 3 years	Total cost over 5 years											
ESKO 🛟	UV Main Exposure	Yeaı			sible UV d g volume			_	t on												
QU POND.	O2 Depletion Using Gas	Accun			reflected and flores	_			nders,												
Mac Dermid	O2 Depletion Using Laminate	Costs	reflected		years usa scent UV			early fe	es and												
Flint Group	UV Diode Boost	Year 5			ed in repl prescent				y fees												
Kodak	Imaged Laminate							f gas cylinders, cement yearly fees and des, yearly fees													

Full HD Flexo and Color Matching



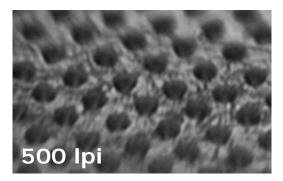
What is the CORRECT Solid Ink Density?

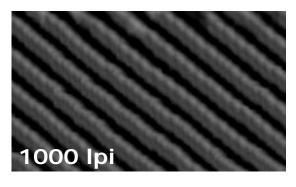
What is the CORRECT Solid Ink Density?

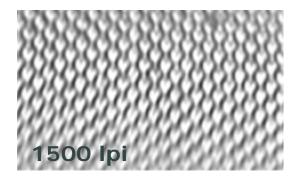
Spectral measurement at different solid ink densities:

Select The Right Full HD Flexo Solid Screening

- Optimal Ink Laydown (no pinholes) for CMYK, spot colors and white
- Select the desired ink density w/o changing the Anilox roller:




- Differentiate between spot colors, white and process colors:
 - Process colors: Target SID between 1,4 and 1,5
 - Spot colors: SID as high as you get....
 - White printing: Opacity as high as you get...

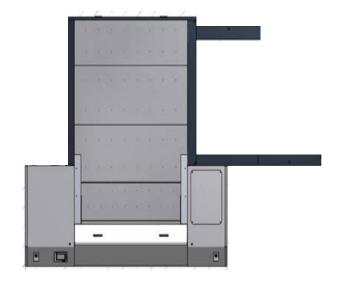

Which Full HD Solid Screening tool to use?

Full HD Flexo Solid Screening Technologies

Full HD Flexo, HD Color & Automation

CDI FULLY AUTOmatic

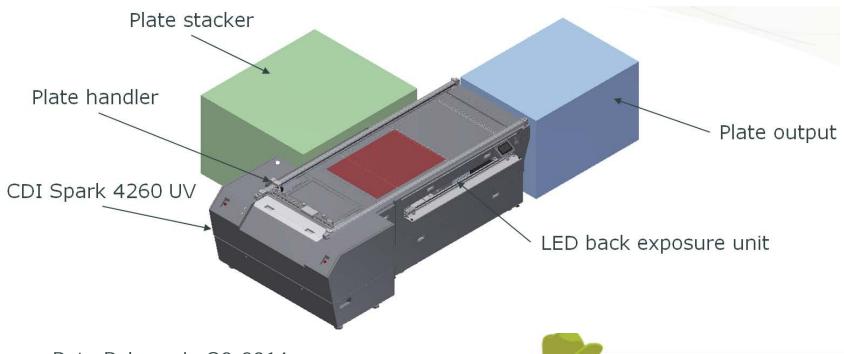
- Demonstrated at DRUPA with great success
 - Very High interest from visitors
- ROI is surprisingly short
 - → Increased throughput and reduced plate wastage
 - → Improved handling accuracy and plate loading
 - → Diode Back and Main UV exposure
 - → Free-up manpower in plate room
 - One man operation
- CDI 4835 release late 2013
- CDI 4260 & 5080 late 2014



CDI FULLY AUTOmatic workflow

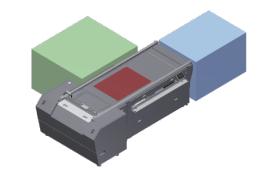
- lights out production

Quickest throughput at least manpower


- Manual plate loading
- Inline Back Exposure
- Automated plate loading
- Inline UV Main Exposure
- Automated unloading off drum
- Handover of plate to plate processor
- Highest consistency per workflow step secures quality
- → Automation brings consistency which secures repeatable quality
- → Maximized machine usage and plate throughput

LIGHTS OUT - CDI

for Flexible Packaging and Label Converters



Beta-Release in Q2-2014

Productivity in detail

Resulting productivity in fully automatic mode:

- 2540ppi: 2,5 plates/h (045/067) → 4 m²/h
- 4000ppi: 2 plates/h (045/067) → 3,2 m²/h

Cycle	Time (minutes)	1	2	3 4	5	6	7 8	9 1	0 11	12 1	3 14	15	16	17 1	B 19	20	21 2	22 2	3 24	25	26 2	7 28	29 3	0 31	32	33 34	35	36 3	7 38	39 4	10 41	42	43 4	4 45	46	47 4	8 49	50	51 5	52 53	54	55 5	66 57	58 5	59 60	0 61	62 63
	Plate preparation plate stacker				П																																										
	Loading to back exposure unit														Г										П									Т				П			П			П			
	Back exposure (DFH 067)																																														
Plate #1	Loading to CDI Spark 4260	П																																													
	Imaging Optics 80				П																				П									Т				П			П			П			
	Inline UV exposure																																														
	Unloading to output																																														
	Plate preparation plate stacker	П																																										П			
	Loading to back exposure unit				П															П					П							П						П			П			П			
	Back exposure (DFH 067)														Γ																			П				П			П			П			
Plate #2	Loading to CDI Spark 4260																																											П			
	Imaging Optics 80																			П					П																П			П			
	Inline UV exposure														Γ																			П				П						П			
	Unloading to output																																														
		—	1st plate time = 39 minutes													2nd plate & cycle time = 24 minutes													→																		

