This Job Looks Terrible !!!

It MUST be the Plates.....

FPPA Annual Conference March 2, 2014

Tom Cassano Technical Manager

Flexo Printing is a Simple Process

- There are only a few components in the mechanics of ink transfer
 - Ink
 - Anilox Roll
 - Metering Device
 - Plate
 - Substrate

Mechanics of Ink Transfer

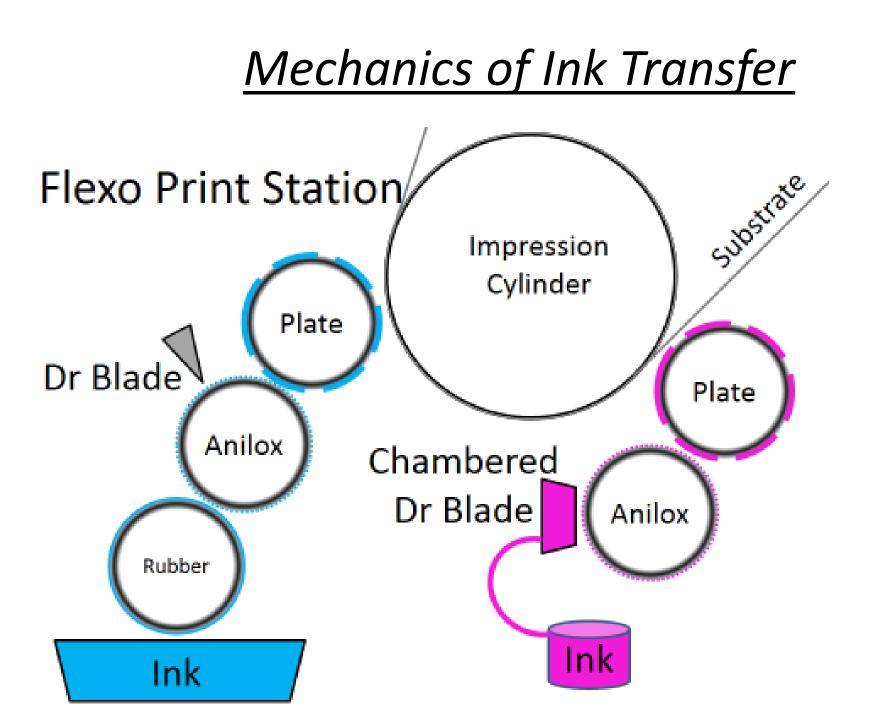
- BUT..... It's the interactions, or lack thereof between them....That can drive you CRAZY!!!
- A **BASIC** understanding of the components and how they interact, or don't interact, can help solve printing issues more quickly

• Troubleshooting Flexo isn't always knowing exactly what the problem **IS**.... It's done by systematically eliminating what it **ISN'T !!**

<u>Common Printing Complaints About</u> <u>Plates</u>

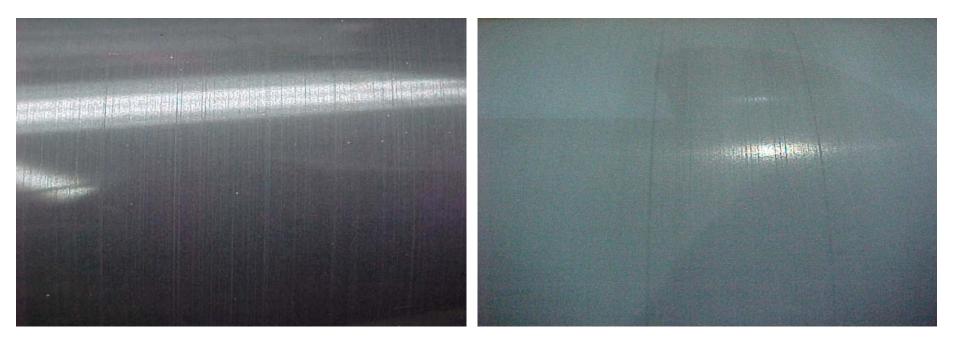
- Color/Coverage
 - Too Light
 - Too Dark
 - Non Uniform Color in Solids
- Dirty Print/Screens
- Dot Gain

<u>Common Printing Complaints About</u> <u>Inks</u>

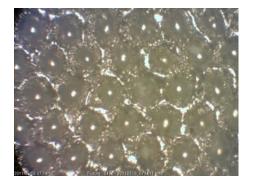

- Color/Coverage
 - Too Light
 - Too Dark
 - Non Uniform Color in Solids
- Dirty Print/Screens
- Dot Gain

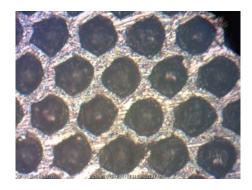
<u>Common Printing Complaints About</u> <u>Anilox Rolls</u>

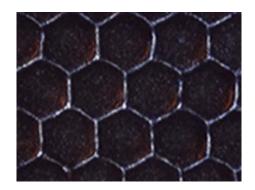
- Color/Coverage
 - Too Light
 - Too Dark
 - Non Uniform Color in Solids
- Dirty Print/Screens
- Dot Gain

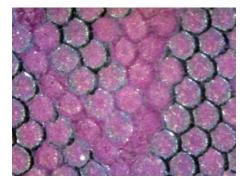

Color and Coverage

- Dictated by the VOLUME of the Anilox Roll
 Ink Film Thickness
- INFLUENCED by the Metering System
 - 2-Roll
 - Doctor Blade
- INFLUENCED by the Ink
 - Viscosity
 - Dry Rate
- A plate, suitable for the application, <u>properly</u> <u>produced</u>... has NO INFLUENCE on Color and Coverage

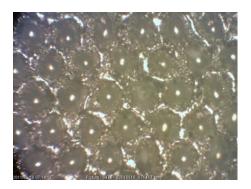

<u>The Anilox Roll</u>

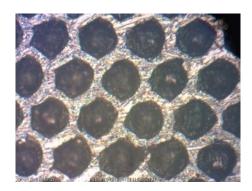

• This is what YOU see

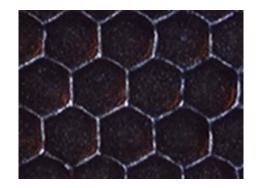


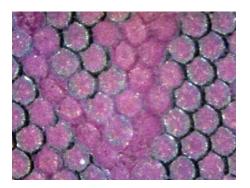

The Anilox Roll

• This is what I see

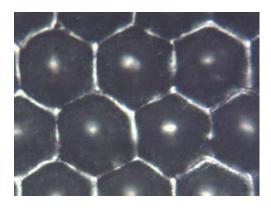


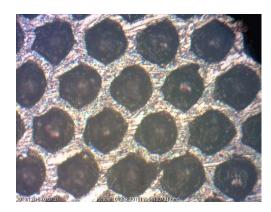


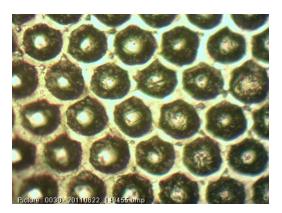


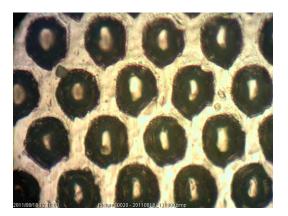

<u>The Anilox Roll</u>

- All of these will work in a 2-Roll System
- Only 1 will with a Doctor Blade

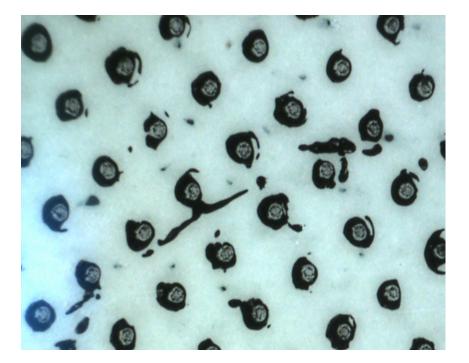




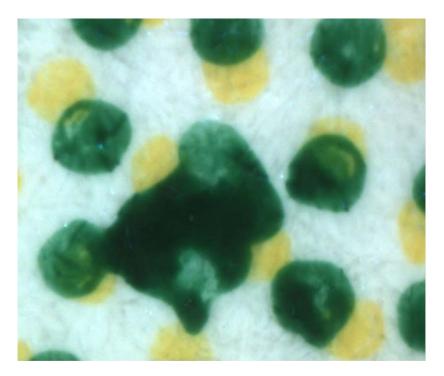



Doctor Blade Metering

• Wear changes the Volume, IFT, and Uniformity of Laydown

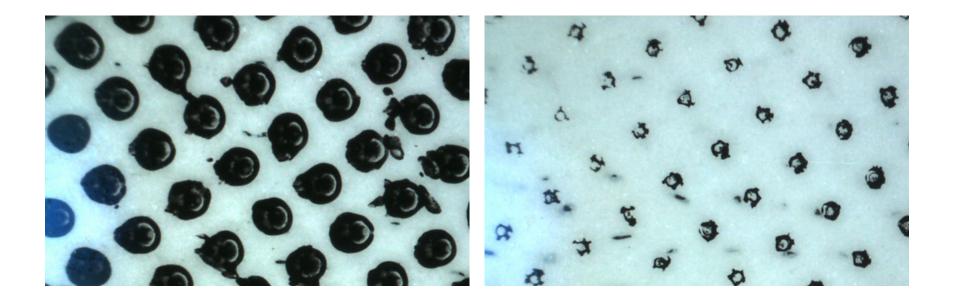

Pressman's Trick to Make a Worn Roll Work Contact Area Contact Area

Dirty Print/Dirty Screens


- Plates DON'T Print Dirty !!!!
 - How can a raised image medium deposit ink where there is NO raised image area????
- Inks can cause it
 - Poor Viscosity Control
 - Dry Rate incorrect
- Anilox Rolls can cause it too
 Only if incorrectly specified for Volume and/or Cell Count
 - Inking Impression setting has a big influence

Dirty Print/Dirty Screens

Viscosity Too High


Too Much Volume

Dirty Print/Dirty Screens

Heavy Inking Impression

Incorrect Dry Rate

<u>Dot Gain</u>

- The Plate(s) could be a cause but unlikely
 IF wrong DGC applied
- Inks can be a cause but unlikely
 - Low viscosity/High Spread would create light color/low density
- Anilox Roll could also be a factor but also unlikely
 - IF wrong Volume specified

<u>Dot Gain</u>

Excessive Inking Impression

A Plate Issue???

- No, not the Plate
- Not the Ink
- Not the Anilox Roll
- Virtually ALL Dot Gain issues are Operator induced!!!

Understanding What's What

 Defending our products when problems arise is much easier when we know what questions to ask and how the inter-related products react or don't react with one another

Aniloxes to the Rescue

- Well sort of....
- Other engraving technology that can help minimize or eliminate the issues we have ALL been accused of causing

• But first, a look at where we are now

60° Hex Engraving

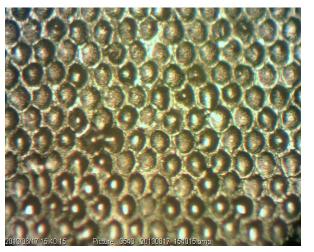
Standard 60° H Engraving

Single Laser Pulse Cell Formation

At the time was the best technology available

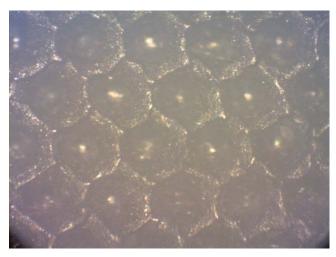
- Most Widely Used Pattern
- Works Well In Most All Flexo Applications
- **BUT....** Only If It's Specified W/In 23% to 33% Depth to Opening Ratio

Proper Depth to Opening Ratio 23%-33%


- Within That Ratio.....
 - Good Geometric Cell Quality Is Achieved
 - Parabolic Cavity Shape For Good Ink Transfer
 - Volume Can Be Verified Through Microscope and Mathematical Calculation or Advanced Measurement Technology
- Both Required For Good Print Quality

Proper Depth to Opening Ratio

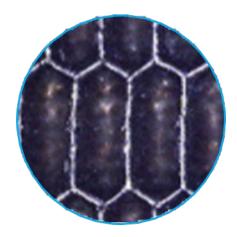
<u>23%-33%</u>


IF Too Shallow <23%

- 1000 L/S- 1.0 BCM @ 18%
- Poor Cell Structure
- Cavity Shape Doesn't Fit Mathematical Formula

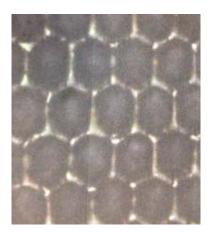
If Too Deep >33%

- 250 L/S- 8.6 BCM @ 35%
- Poor Cell Structure
- Cavity Shape Doesn't Fit Mathematical Formula


Cell Volume is Constrained by the Cell Count

Extended Hexagon

550 – 2.0 BCM @ 19%


Volume Verified Through Interferometry

No Loss of Geometric Cell Quality

800 – 4.0 BCM @ 50%

Volume Verified Through Interferometry No Loss of Geometric Cell Quality

Cell Volume is NOT Constrained by the Cell Count

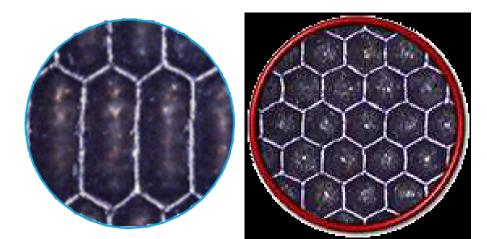
<u>Volume Constraint</u>

Standard 60° Hex

360 Cell Count
 - 3.9 to 5.0 BCM

Extended Hex

- 360 Cell Count
 - 4.8 to 7.2 BCM


How Does This Help?

Extended Hex

- Removal of interior cell walls adds volume capacity
- Much more surface ink available to the plate-Better transfer, laydown and coverage
- Shallower engraving is MUCH easier to clean H20 based and higher viscosity curable inks
- Better Opacity with Opaque Whites

Standard 60^o Hex

- Less surface ink to the plate
- More sensitive to viscosity drift
- Can be more difficult to clean if spec'd to the higher side of D/O ratio.

Extended Hexagon

Coverage w/ 60° Hex 550 – 3.0 BCM Coverage w/ Extended Hex 550 – 3.0 BCM

How Does This Help?

- Good for Combination Printing
 - Higher volumes needed for Spot Color strength can be had at higher cell counts to help keep screens clean
 - Caveat is use should be limited to H20 and Solvent Inks.
 - More diligence needed in keeping rolls clean because the cells are deeper

<u>Summary</u>

- All of the major components in the print train are inter-related
- Understanding their reactions or lack thereof is important in quickly solving press side issues
- Eliminate what the problem ISN'T first
- There is other anilox roll engraving technology available besides the 60° Hex